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The distortion of a magnetic field by 
flow in a shock tube 
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Induced magnetic fields in shock-tube flows have been measured by previous 
authors, in order to determine the electrical conductivity of ionized gases. 
Distortion of the applied magnetic field was taken to be small. In  the present 
work, the full magnetic field solution is developed for idealized boundary con- 
ditions. At a magnetic Reynolds number equal to 4 the distortion is found to be 
considerable, but the field is well represented by a solution correct to third order in 
magnetic Reynolds number, The axial field in a real shock-tube configuration was 
computed, and experimentally measured fields were found to agree reasonably 
with theory. 

1. Introduction 
The electrical conductivity of an ionized gas can be found experimentally from 

the currents induced in the gas when it flows through a magnetic field. This tech- 
nique was used by Lin, Resler & Kantrowitz (1955) to determine the conductivity 
of argon. The flow of ionized argon was generated in a shock-tube, and the mag- 
netic field was applied by means of a d.c. coil, mounted so that its axis coincided 
with that of the shock-tube. Recently Pain & Smy (1960) have made similar 
measurements of the conductivity of argon using a shock tube and two pulsed 
field coils. In  both these experiments, the magnitude of currents in the gas was 
deduced from the pick-up on a search coil, and the response was calibrated by 
comparison with the response due to materials of known conductivity. The 
analyses of the results concentrated on the fact that the sample of gas has a 
finite length over which the conductivity is not constant. This variation occurs 
since there is a small region behind the shock in which the gas has not reached 
equilibrium, and there is a subsequent cooling of the gas with ‘bremstrahlung ’ 
radiation. 

In  principle the induced currents can be calculated from the interaction of 
the flow with only the applied field if the conductivity and velocity distributions 
are known, and the currents are not strong enough to modify the applied field 
appreciably. The induced field at  the search coil can be determined by Biot- 
Savart’s law. It is well known that such a technique is valid when the magnetic 
Reynolds number is small, i.e. 

where p is the permeability, r the electrical conductivity, v the velocity, 1 a 
typical length, and the M.K.S. system is being used. However, except in small, 

11) RM = p ~ ~ l  < 1, 
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low-speed shock-tubes the condition (1) is not valid, and it is the purpose of the 
present paper to investigate the distortion of magnetic fields as the condition is 
relaxed. If we can express the field solution as a power series in R,, 

B = B,+RMB1+RsB, ..., ( 2 )  

where B, is the applied field, interest lies in the second- and higher-order terms. 
Although the analysis of Lin et al. (1955) assumed the condition (l), their search 
coil was calibrated over a range of values of R,. In  their case the second- and 
higher-order effects were found to be negligible, and could be discounted. 

We shall assume here that the applied magnetic field is weak so that the elec- 
trical conductivity is scalar, and magnetic forces have negligible effeot on the 
flow pattern. The latter condition requires that 

where B is a typical field strength, and p is the gas density. The problem is then 
idealized by assuming that there is steady uniform flow down the tube, the elec- 
trical conductivity is constant, and the gas sample has infinite length. This 
idealization is reasonable if the applied field region is short compared to the length 
over which the conductivity changes appreciably, and the rise of the induced field 
is rapid. The magnetic field is taken to be axially symmetric with only radial 
and longitudinal components, as might be given by coils or systems of coils whose 
axes coincide with the shock-tube axis. 

Kinematic problems in magnetohydrodynamics, for which the velocity field 
and conductivity distribution are assumed to be known, have been treated by 
many authors, notably Lundquist (1952). Usually there have been no boundaries 
to the velocity field, and in a previous paper, Cowley (1961), the simple solution 
for a wire loop or coil was given. Here the problem is more difficult. The kine- 
matic solution within the shock-tube must be compatible with a free-space solu- 
tion outside. However, as a first step towards understanding the higher-order 
effects in RM we may assume that the magnetic flux a t  the wall of the tube can 
be measured, and the problem reduces to that of finding a kinematic solution for 
a known boundary condition. In  practice the magnetic flux at a high-conductivity 
metal wall will be held constant for the duration of flow in a shock tube. It is 
then easily measured 

Although the higher-order effects are likely to be small, it  is interesting to see 
to what extent shock-tube experiments respond to the predictions of the simplest 
form of steady-state magnetohydrodynamic theory. The later part of the paper 
describes some measurements of the distortion of a magnetic field. 

2. Kinematic solution 
We shall use the cylindrical polar co-ordinate system ( r ,  19, z) where the z-axis 

lies along the axis of the tube. The assumptions discussed in the introduction 
require that 

alat = 0, alas = 0, B = ( B ~ ,  o , ~ , ) ,  v = (0, o,v) ,  (4) 
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where the z-component of thevelocity is constant. It is easily seen that theelectric 
field intensity is zero, and the magnetic field can then be found from 

divB = 0, 

curl B = pj = pucrv x B, 

where we shall assume constant permeability, and j is the current density. 
It is convenient to use the vector potential A with the definition 

curlA = B, divA = 0, (7)  

R = r/ro, Z = z/ro. (8) 

(9) 

and to introduce co-ordinates referred to the tube radius ro 

Then by (4) we have A = (0, A ,  01, 

(5) is necessarily satisfied and (6) becomes 

where 2h = puavr,. If r~ is constant the problem can be characterized by A, or 
more naturally by the magnetic Reynolds number based on tube diameter with 

RIM = 2pavr0 = 4h. 
Rearranging ( l o ) ,  we obtain 

For present purposes we seek a solution to ( 1  2 )  of the form 

A = Jmm A,(.%.v)f (R, z - 2,) dZ,, 

where A ,  would be the measured value of A on the tube wall at 2 = 2,. It 
should be noted that A ,  is related to the total magnetic flux enclosed by the 
particular transverse section of the tube. The elementary solution for a small 
flux element, A,f(Z) 1.32, will have boundary conditions 

( 1 4 )  } 
A = A ,  at R = l ,  -+SZ<Z<+SZ; 

A = O  at R =  1 ,  Z < -+SZ, Z > +SZ. 

The required expression can be found by straightforward Fourier-transform 
techniques, and the derivation is given in the Appendix. We obtain for the field 
on the axis of the tube 

where IJ(q2 + A2)*] is a modified Bessel function of the first kind and of first order. 
Although (15 )  is an exact solution, it is interesting to expand the integrand in 
powers of A, and find how many terms would be needed for a reasonable estimate 
of the field strength using a power series in RIM. 
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The expansions for modified Bessel functions of the first kind give 

m ( 4 ( q 2  + h2)&}2n+1 co n (+)2n+1 q2n-~rnh2rn = c c - - -  - c n = O m = O  (n-m)!m!  ( n + 1 ) !  
1 - - 11[(Q2 + h2PI 

( q 2 +  A2)3 ( q 2  + h 2 ) h  n-0 n!(n f I)!  

00 m h2m ( +q) 2(n--m)+m+l 
- = c  m=o n=m c 2wz! qm+l (n-m)!  ( (n-m) + (m + l)}! 

provided that for all q. 

their maximum values at q = 0,  Terms containing I,+l(q)/qmIl(q) in (17) have 
and hence (18) is satisfied if h/Il(h) > 1, which requires R, = 4h < 9.95. 

2 0 0.1 0.2 0.3 0.4 0.5 

SO(Z) 1.775 (8) 1.723 (0) 1.576 (4) 1.365 (3) 1.126 (3) 0.891 (3) 
m(2) 0.384 (7) 0.376 (0)  0.351 (4) 0.314 (8) 0.267 (7) 0-226 (0) 

0.6 0.7 0.8 0.9 1.0 1.1 
0.6815 0.5068 0-3688 0.2641 0.1867 0.1307 
0.1831 0.1449 0.1123 0.0858 0.0646 0.0481 

1.2 1.3 1.4 1.6 1.8 2.0 

0.0909 0.0628 0.0433 0.0204 0.0954 0.0045 
0.0356 0.0261 0.0190 0~0100 0.0052 0-0026 

2.2 2.6 3.0 

0.0021 0~0010 0.0004 
0.0013 0.0003 0~0001 

The results for which the last figure is given in parentheses may be in error by 0.0002. 

TABLE 1 

Substituting from (17) in (15), we can obtain 

6BZr,/AwSZ = e*RxZ{g , (Z)  -&-2R&gl(Z) + O(B&)), (19) 

where g,(Z) and gl(Z)  are even functions of Z given by 

g,(Z) =-J0 1 " q  mcosqzdq, gl(Z) = :/m&u c0sqZdq. (20a,b) 
77 0 I:(d 

go(Z) and gl(Z) can also be expressed in series form as can be seen from the 
alternative expression to (15) derived in the Appendix. However, convergence 
for small Z is not rapid. Using the series where possible and the method for 
numerical integration developed by Filon (1928) where not, the above table 
(table 1) has been compiled. 
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Finally, expanding e R ~ ~ l 4  in (19), we obtain the first four terms of the power 
series solution : 

%ro/A,SZ = so(Z) + R,,*~g,(Z) + RL,,1,{Z290(Z) --Sl(Z)) 

+R3,&V390(Z) - 3Zg,(Z)) + O(R!i!r). (21) 

3. Discussion 
If the magnetic flux at the wall is held constant for a d.c. coil mounted outside 

the tube, A ,  is symmetric about the plane of the coil, and decreases monotonic- 
ally to zero with distance from the coil. Such a variation of A ,  is crudely repre- 
sented by the boundary conditions (14), and the elementary solution (15) should 
give an indication of the general features of the magnetic field due to a single d.c. 
coil. However, when the restriction on magnetic-field changes at  the wall is 

0.6 t First order 

-0.64 

FIGURE 1. Comparison of induced field solutions on the axis of a tube for RM = 4. 

relaxed, it is likely that field distortion is greater than is indicated here. Figure 1 
compares approximate solutions for the induced magnetic field SBiz on the axis 
of the tube when RM = 4. Values of the applied field 6Bo, can be found from the 
previous table since by (21) 6B,,ro/AwSZ = go(Z). Two of the curves in figure 1 
are taken from equation (21), and represent solutions correct to first order and 
second order in RM. The remaining curve was calculated from equation (19). A 
few points were computed from the exact solution and were found to be indis- 
tinguishable from the last curve in the figure. The induced field is also quite well 
represented by the solution correct to third order in R,. 

The maximum induced field on the axis has a value approximately one-quarter 
of the maximum applied field. Second- and higher-order effects do not have a 
great significance when considering the magnetic field as a whole, but they can 
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be important when measuring the induced field only, as in the experiments on 
electrical conductivity. However, the second-order term in the solution is zero at 
2 = k 0.5 approximately, points at which the magnitude of the first-order term 
is nearly maximum. This feature may be guessed intuitively since first-order 
radial-field components will tend to disappear near where the first-order field on 
the axis is a maximum; second-order induced currents and axial fields will then 
be small. When the tube isnon-conducting, similar reasoning suggests that second- 
order flux linkage through an external search coil is zero in the region of maximum 
first-order flux linkage. The fact that higher-order effects were small in the experi- 
ments of Lin et al. (1955) might perhaps be due to having the search coil in such a 
position. In  the work of Pain & Smy (1960) two field coils with opposing currents 
were arranged symmetrically about the plane of the search coil. Second- and 
all even-order flux linkage would be zero. However, some tests showed a marked 
variation of conductivity along the length of the gas sample, field strengths were 
in some cases nearly high enough for dynamic interaction, and the present argu- 
ments are hardly justified. 

4. Experiments on field distortion 
A 5 in. diameter combustion-driven shock-tube was used for experimental 

measurement of magnetic field distortion. The test-section tube was made of 
copper, and had a wall thickness of gin. The decay time for a uniform magnetic field 
in such a tube is approximately 30 msec, as compared to the 0.2 msec maximum 
duration of ionized gas flow. Tests with an external search coil confirmed that 
flux changes at the copper were negligible. A weak magnetic field was provided 
by a short d.c. coil mounted co-axially with the shock tube. The field strength on 
the axis of the tube was 5 x 10-3W/m2, and the dynamic interaction parameter 
C, based on this field strength and the diameter of the tube was of order 
The applied flux at the wall was measured for a series of transverse sections on a 
separate test rig. 

Two search coils mounted in a non-conducting probe were used to measure 
the induced field on the axis of the tube. The probe had to be constructed robustly, 
but the reduction in total flow area due to its presence was only 1 yo. In  order to 
take a series of induced field readings, the position of the field coil relative to the 
shock tube could be varied. The search coils were designed to give a large- 
amplitude signal so that trouble from the electrostatic pick-up noticed by Lin 
et al. (1955) would be avoided. However, a slight pick-up was observed, and had to 
be allowed for. The signals were integrated before display on an oscilloscope. 

Ionization probes detected shock position at  four points upstream of the test 
section, and the time taken for the shock to pass between probes was measured. 
Uniformity of measured shock velocity was taken as a reasonable indication that 
flow velocity behind the shock would be uniform. De Leeuw (1958) has tabled 
values of velocity and electrical conductivity behind strong shocks travelling 
into argon, which was the working gas in the present case. He assumed that 
thermal equilibrium is obtained behind the shock, and computed electrical con- 
ductivity by the same method as Lin et al. (1955). From these results experimental 
values of Ral could be estimated. 



Distortion of a magnetic field by $ow 573 

Test runs were made with shock Mach numbers in the range 11.0-11.3 and in 
the range 14-2-15.3. Corresponding values of R&* are 1.5 -1.6 and 3.1-3-8. The 
initial gas pressure was 3mm of mercury. A third series was attempted for 
Mach numbers of 17, but conditions were found to be too unsteady. Results 
are plotted in figure 2, and are compared with theoretical curves for mean values 
of RM in each series. The curves were found by numerical integration, using 
measured values of A ,  and the solution given by equation (19). It should be 

Flow direction 

v q  

FIGURE 2. Induced field on the axis of the shock-tube. The full lines are calculated from 
the known flux at the wall. The symbols, 0 and v, designate experimental readings taken 
for R, in the region of 1-54 and 3.4, respectively. I refers to current in the d.c. coil. 

noted that, in order to close the scale of the graph, the induced field has been 
divided by RIM. All experimental points have been scaled by a further factor of 
0.94. The absolute calibration of the search coils was only of this order of accuracy 
although their relative calibration was better. The arbitrary reduction of the 
experimental values has been done to emphasize the fact that in relation to each 
other the results of each series show the expected trend. Scatter of the points is 
due to experimental errors rather than variations of RM within the test ranges. 

A typical oscilloscope trace is shown in figure 3. Although relaxation times for 
ionization were greater in the low Mach number series, equilibrium appeared 
to be reached in all runs. The purity of the argon was approximately 99%, a 
fact which may account for the rapid ionization. It is not expected that the 
presence of impurities would seriously affect the estimates of conductivity. 
Between the initial rise of induced field and the cut-off with the advent of the 
driver gases at the contact ‘front ’, the oscilloscope trace shows a gradual decay 
on which a slight ripple is superimposed. The decay is due to radiation cooling 
lowering the gas conductivity. The ripple is slightly greater than that expected 
from typical variation in measured shock velocity. Lin et al. (1955) observed a 
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similar effect, and have suggested that it is due to radial oscillatory motion of the 
gas interacting with longitudinal field components. In  measuring the magnitude 
of the signal an estimate was made of the shape of the trace if the ripple were 
discounted, and the reading was taken at a point before decay had become 
appreciable. 

FIGURE 3. Typical oscilloscope trace of integrated signals from the search coils. Shock 
Mach number 16.2, time scale 40p~1ec/cm. For the upper trace the search coil was at 
Z = - 0.84, and for the lower at Z = - 0.64. 

P 
/ 

6 t / // 

z 
FIGURE 4. Displacement of the point on the axis of the shock-tube at which the induced 
field is zero. Points calculated from the solution correct to third order in R ,  are shown 
by the symbol 0. Points taken from the experimental curves me shown with the expected 
range of error by the elongated crosses. 
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The position at which the induced field is zero is moved progressively down- 
stream as R,, increases. The determination of this point experimentally for each 
series is not affected by systematic errors in the reading of the magnitude of in- 
duced fields. This displacement was estimated from curves giving the best fit 
to the experimental points. The results are compared in figure 4 with points 
calculated for the solution correct to third order in RM, 

The author is greatly indebted to Dr J. A. Shercliff for many stimulating dis- 
cussions during the course of the work and to Mrs P. Camm for her help in com- 
puting results. The shock-tube project is supported by the United Kingdom 
Atomic Energy Authority. 

Appendix: Derivation of the magnetic field solution 
Let d = e-AzA, and g ( q )  be the Fourier transforms of d, so that 

q q )  = Jw d e i q z d Z .  

If we assume d and i3d/aZ + 0 as IZI + a, and defer justification until later, 

- W  

( 12) becomes 
a 2  i a  1 

- + - - + - - ( q 2 + P )  aR2 RaR R2 
The appropriate solution for the field inside a tube is 

.&T= CIl[(q2 i- h2)* R], (23) 

where C is a constant. The transform of the boundary conditions (14) gives, a t  

Using (24) in (23) to evaluate C, and inverting, we obtain 

The magnetic field on the axis of the tube is then given by 

The path of integration for (26) can be closed in the complex q-plane by a curve 
where iq 3 03 if 2 > 0, or where iq -+ - 00 if 2 < 0. The poles of the integrand 
lie at  q = 5 i(h2 +a:)+ where a, is any of the roots of J,(a) = 0, except for a = ' O ,  
and Jl(a) is a Bessel function of the first kind and of the first order. The sum of 
the residues at the poles in the appropriate half plane gives 
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A similar series can be formed for the integral in (25), and it is found that the 
original assumptions, d and ad/aZ -+ 0 as 121 -+ co, are justified. The integral 
of (26) is expanded as a power series in Q 2. The series for the individual terms are 
most easily obtained by expanding (27). 
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