567

The distortion of a magnetic field by
flow in a shock tube

By M. D. COWLEY

Department of Engineering, University of Cambridge
(Received 23 June 1961)

Induced magnetic fields in shock-tube flows have been measured by previous
authors, in order to determine the electrical conductivity of ionized gases.
Distortion of the applied magnetic field was taken to be small. In the present
work, the full magnetic field solution is developed for idealized boundary con-
ditions. At a magnetic Reynolds number equal to 4 the distortion is found to be
considerable, but the field is well represented by a solution correct to third order in
magnetic Reynolds number. The axial field in a real shock-tube configuration was
computed, and experimentally measured fields were found to agree reasonably
with theory.

1. Introduction

The electrical conductivity of an ionized gas can be found experimentally from
the currents induced in the gas when it flows through a magnetic field. This tech-
nique was used by Lin, Resler & Kantrowitz (1955) to determine the conductivity
of argon. The flow of ionized argon was generated in a shock-tube, and the mag-
netic field was applied by means of a d.c. coil, mounted so that its axis coincided
with that of the shock-tube. Recently Pain & Smy (1960) have made similar
measurements of the conductivity of argon using a shock tube and two pulsed
field coils. In both these experiments, the magnitude of currents in the gas was
deduced from the pick-up on a search coil, and the response was calibrated by
comparison with the response due to materials of known conductivity. The
analyses of the results concentrated on the fact that the sample of gas has a
finite length over which the conductivity is not constant. This variation occurs
since there is a small region behind the shock in which the gas has not reached
equilibrium, and there is a subsequent cooling of the gas with ‘bremstrahlung’
radiation.

In principle the induced currents can be calculated from the interaction of
the flow with only the applied field if the conductivity and velocity distributions
are known, and the currents are not strong enough to modify the applied field
appreciably. The induced field at the search coil can be determined by Biot—
Savart’s law. It is well known that such a technique is valid when the magnetic
Reynolds numberissmall, i.e. Ry = pool < 1, (1)
where u is the permeability, o the electrical conductivity, v the velocity, I a
typical length, and the M.K.S. system is being used. However, except in small,
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low-speed shock-tubes the condition (1) is not valid, and it is the purpose of the
present paper to investigate the distortion of magnetic fields as the condition is
relaxed. If we can express the field solution as a power series in E,,,

B = By,+ Ry B, +RyB,..., (2)

where B, is the applied field, interest lies in the second- and higher-order terms.
Although the analysis of Lin ef al. (1955) assumed the condition (1), their search
coil was calibrated over a range of values of R;;. In their case the second- and
higher-order effects were found to be negligible, and could be discounted.

We shall assume here that the applied magnetic field is weak so that the elec-
trical conductivity is scalar, and magnetic forces have negligible effect on the
flow pattern. The latter condition requires that

oB%
pv

where B is a typical field strength, and p is the gas density. The problem is then
idealized by assuming that there is steady uniform flow down the tube, the elec-
trical conductivity is constant, and the gas sample has infinite length. This
idealization isreasonable if the applied field region is short compared to the length
over which the conductivity changes appreciably, and the rise of the induced field
is rapid. The magnetic field is taken to be axially symmetric with only radial
and longitudinal components, as might be given by coils or systems of coils whose
axes coincide with the shock-tube axis.

Kinematic problems in magnetohydrodynamics, for which the velocity field
and conductivity distribution are assumed to be known, have been treated by
many authors, notably Lundquist (1952). Usually there have been no boundaries
to the velocity field, and in a previous paper, Cowley (1961), the simple solution
for a wire loop or coil was given. Here the problem is more difficult. The kine-
matic solution within the shock-tube must be compatible with a free-space solu-
tion outside. However, as a first step towards understanding the higher-order
effects in R,, we may assume that the magnetic flux at the wall of the tube can
be measured, and the problem reduces to that of finding a kinematic solution for
aknown boundary condition. In practice the magnetic flux at a high-conductivity
metal wall will be held constant for the duration of flow in a shock tube. It is
then easily measured

Although the higher-order effects are likely to be small, it is interesting to see
to what extent shock-tube experiments respond to the predictions of the simplest
form of steady-state magnetohydrodynamic theory. The later part of the paper
describes some measurements of the distortion of a magnetic field.

2. Kinematic solution

We shall use the cylindrical polar co-ordinate system (r, 6, z) where the z-axis
lies along the axis of the tube. The assumptions discussed in the introduction
require that

8/ot =0, 8/6 =0, B=(B,0,B), v=/(0,00), (4)
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where the z-component of the velocity is constant. Itiseasily seenthattheelectric
field intensity is zero, and the magnetic field can then be found from

divB =0, ()
curl B = pj = pov x B, (6)

where we shall assume constant permeability, and j is the current density.
It is convenient to use the vector potential A with the definition

curlA =B, divA =0, (7)

and to introduce co-ordinates referred to the tube radius r,
R=vrlry, Z=2z|r,. (8)
Then by (4) we have A =(0,4,0), (9

(5) is necessarily satisfied and (6) becomes

024 0 [(19(RA) 04
7%t 3R (z—a*azz ) =25 (10)
where 2A = powr,. If o is constant the problem can be characterized by A, or
more naturally by the magnetic Reynolds number based on tube diameter with

R, = 2p0vry = 4A. (11)
Rearranging (10), we obtain

2 e 19 1 N
(EZE+8—RQ+*RE+R§——/\)6 A = 0. (12)
For present purposes we seek a solution to (12) of the form

4 = J.:o ApZg ) [(R, Z — Zy) Ay, (13)

where A, would be the measured value of A on the tube wall at Z = Zy,. It
should be noted that Ay is related to the total magnetic flux enclosed by the
particular transverse section of the tube. The elementary solution for a small
flux element, Ay, f(Z)8Z, will have boundary conditions

A=A, at R=1, —3}Z<Z < }0Z; }

(14)
A=0 at R=1, Z< —}0Z, Z > }0Z.

The required expression can be found by straightforward Fourier-transform
techniques, and the derivation is given in the Appendix. We obtain for the field
on the axis of the tube
AZ fo 2 b3% 3

3BZ7‘0 — 6_ (q +A ) e—iqqu, (15)
A2 " 2 ) Ii(gh+ A
where I,[(g2 + A2)}] is a modified Bessel function of the first kind and of first order.
Although (15) is an exact solution, it is interesting to expand the integrand in
powers of A, and find how many terms would be needed for a reasonable estimate
of the field strength using a power series in R,,.
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The expansions for modified Bessel functions of the first kind give

Il [(qz + /\2)1}] B 1 @® {%(qz + /\2)1}}2n+1 © 7 ( )2n+1q2n—2m,\2m
@+ (@10 a7 20,2 (n—m)im! (n+ 1)
_ © @ /‘\2m (%q)z(n——m)+m+1
- ,,Eo an 2mm 1 gm 1 (n —m)! {(n —m) + (m + 1)}!
_ o A L) (16)

——0 2mm1 qm+1 *
We then have
@+ gq E Juag) AP\ g [0 A% Lg)
L@+ 298~ L@ 1+ 2 ] = @ ‘1 3 ahig) OO,

(17)
. ¢+ L(g)
ded that L = forallg. 18
provided tha Tl A9 >2 or all (18)
Terms containing I,,.,(¢)/g™(g) in (17) have their maximum values at ¢ = 0,
and hence (18) is satisfied if A/I,(A) > 1, which requires R, = 4A < 9-95.

Z 0 0-1 0-2 03 0-4 0-5

PRVA 1-775(8) 1723 (0)  1-576 (4)  1-365(3) 1126 (3)  0-891 (3)
7.(Z) 0-384 (7)  0-376 (0)  0-351 (4)  0-314(8)  0-267 (7)  0-226 (0)
06 0-7 0-8 0-9 10 11
0-6815 0-5068 0-3688 0-2641 0-1867 0-1307
0-1831 0-1449 0-1123 0-0858 0-0646 0-0481
1-2 1-3 14 1-6 18 2:0
0-0909 0-0628 0-0433 0-0204 0-0954 0-0045
0-0356 0-0261 0-0190 0-0100 0-0052 0-0026
2.2 2:6 3-0
0-0021 0-0010 0-0004
0-0013 0-0003 0-0001

The results for which the last figure is given in parentheses may be in error by 0-0002.

TaBLE 1

Substituting from (17) in (15), we can obtain
8By 1o/ Ay 07 = etin? {gy(Z) — 35 R}y 0:(Z) + O(BSy)}, (19)

where go(Z) and g,(Z) are even functions of Z given by

1 (-]
go(Z2) = ;fo ﬁ?)coqudq, 9.(Z f coqudq (20a, d)

9o(Z) and g,(Z) can also be expressed in series form as can be seen from the
alternative expression to (15) derived in the Appendix. However, convergence
for small Z is not rapid. Using the series where possible and the method for
numerical integration developed by Filon (1928) where not, the above table
(table 1) has been compiled.
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Finally, expanding e®xZ/4 in (19), we obtain the first four terms of the power
geries solution:

O0Byro|AwdZ = gy(Z) + Ry 1 Zg(Z) + R%u §1§{Z290(Z) - gl(Z)}
+ By 555{2%94(Z) — 3Zg,(Z)} + O(R3).  (21)
3. Discussion

If the magnetic flux at the wall is held constant for a d.c. coil mounted outside
the tube, 4y; is symmetric about the plane of the coil, and decreages monotonic-
ally to zero with distance from the coil. Such a variation of 4, is crudely repre-
sented by the boundary conditions (14), and the elementary solution (15) should
give an indication of the general features of the magnetic field due to a single d.c.
coil. However, when the restriction on magnetic-field changes at the wall is

06T  First order
8B,z70 First and second order

AwbZ

04 J’-

02+t

Equation (19)

~06+
Ficure 1. Comparison of induced field solutions on the axis of a tube for Ry = 4.

relaxed, it is likely that field distortion is greater than is indicated here. Figure 1
compares approximate solutions for the induced magnetic field dB;, on the axis
of the tube when R,, = 4. Values of the applied field d B, can be found from the
previous table since by (21) 6B, 7[Ay 0Z = go(Z). Two of the curves in figure 1
are taken from equation (21), and represent solutions correct to first order and
second order in R,,. The remaining curve was calculated from equation (19). A
few points were computed from the exact solution and were found to be indis-
tinguishable from the last curve in the figure. The induced field is also quite well
represented by the solution correct to third order in Ey;.

The maximum induced field on the axis has a value approximately one-quarter
of the maximum applied field. Second- and higher-order effects do not have a
great significance when considering the magnetic field as a whole, but they can
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be important when measuring the induced field only, as in the experiments on
electrical conductivity. However, the second-order term in the solution is zero at
Z = +0-5 approximately, points at which the magnitude of the first-order term
is nearly maximum. This feature may be guessed intuitively since first-order
radial-field components will tend to disappear near where the first-order field on
the axis is a maximum; second-order induced currents and axial fields will then
be small. Whenthe tubeisnon-conducting, similar reasoning suggests thatsecond-
order flux linkage through an external search coilis zero in the region of maximum
first-order flux linkage. The fact that higher-order effects were small in the experi-
ments of Lin et al. (1955) might perhaps be due to having the search coil in such a
position. In the work of Pain & Smy (1960) two field coils with opposing currents
were arranged symmetrically about the plane of the search coil. Second- and
all even-order flux linkage would be zero. However, some tests showed a marked
variation of conductivity along the length of the gas sample, field strengths were
in some cases nearly high enough for dynamic interaction, and the present argu-
ments are hardly justified.

4. Experiments on field distortion

A 5in. diameter combustion-driven shock-tube was used for experimental
measurement of magnetic field distortion. The test-section tube was made of
copper, and had a wall thickness of }in. Thedecay time for a uniform magnetic field
in such a tube is approximately 30 msec, as compared to the 0-2 msec maximum
duration of ionized gas flow. Tests with an external search coil confirmed that
flux changes at the copper were negligible. A weak magnetic field was provided
by a short d.c. coil mounted co-axially with the shock tube. The field strength on
the axis of the tube was 5 x 10-3 W/m2, and the dynamic interaction parameter
C) based on this field strength and the diameter of the tube was of order 102,
The applied flux at the wall was measured for a series of transverse sections on a
separate test rig.

Two search coils mounted in a non-conducting probe were used to measure
the induced field on the axis of the tube. The probe had to be constructed robustly,
but the reduction in total flow area due to its presence was only 1 9%,. In order to
take a series of induced field readings, the position of the field coil relative to the
shock tube could be varied. The search coils were designed to give a large-
amplitude signal so that trouble from the electrostatic pick-up noticed by Lin
etal. (1955) would be avoided. However, a slight pick-up was observed, and had to
be allowed for. The signals were integrated before display on an oscilloscope.

Ionization probes detected shock position at four points upstream of the test
section, and the time taken for the shock to pass between probes was measured.
Uniformity of measured shock velocity was taken as a reasonable indication that
flow velocity behind the shock would be uniform. De Leeuw (1958) has tabled
values of velocity and electrical conductivity behind strong shocks travelling
into argon, which was the working gas in the present case. He assumed that
thermal equilibrium is obtained behind the shock, and computed electrical con-
ductivity by the same method as Lin et al. (1955). From these results experimental
values of B;; could be estimated.
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Test runs were made with shock Mach numbers in the range 11-0-11-3 and in
the range 14-2-15-3. Corresponding values of Ry, are 1-5 —1:6 and 3-1-3-8. The
initial gas pressure was 3mm of mercury. A third series was attempted for
Mach numbers of 17, but conditions were found to be too unsteady. Results
are plotted in figure 2, and are compared with theoretical curves for mean values
of R, in each series. The curves were found by numerical integration, using
measured values of 4y and the solution given by equation (19). It should be

Bizro
RM/"[ -

3
L 4
Flow direction v
———— e
o

Ry —=34,154,0

v v

Fiaure 2. Induced field on the axis of the shock-tube. The full lines are calculated from
the known flux at the wall. The symbols, O and v/, designate experimental readings taken
for R, in the region of 1-54 and 3-4, respectively. I refers to current in the d.c. coil.

noted that, in order to close the scale of the graph, the induced field has been
divided by R,,. All experimental points have been scaled by a further factor of
0-94. The absolute calibration of the search coils was only of this order of accuracy
although their relative calibration was better. The arbitrary reduction of the
experimental values has been done to emphasize the fact that in relation to each
other the results of each series show the expected trend. Scatter of the points is
due to experimental errors rather than variations of By, within the test ranges.

A typical oscilloscope trace is shown in figure 3. Although relaxation times for
ionization were greater in the low Mach number series, equilibrium appeared
to be reached in all runs. The purity of the argon was approximately 999%, a
fact which may account for the rapid ionization. It is not expected that the
presence of impurities would seriously affect the estimates of conductivity.
Between the initial rise of induced field and the cut-off with the advent of the
driver gases at the contact ‘front’, the oscilloscope trace shows a gradual decay
on which a slight ripple is superimposed. The decay is due to radiation cooling
lowering the gas conductivity. The ripple is slightly greater than that expected
from typical variation in measured shock velocity. Lin ef al. (1955) observed a
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gimilar effect, and have suggested that it is due to radial oscillatory motion of the
gas interacting with longitudinal field components. In measuring the magnitude
of the signal an estimate was made of the shape of the trace if the ripple were
discounted, and the reading was taken at a point before decay had become
appreciable.

Ficurg 3. Typical oscilloscope trace of integrated signals from the search coils. Shock
Mach number 15-2, time scale 40 usec/cm. For the upper trace the search coil was at

Z = —0-84, and for the lower at Z = —0-64.
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Ficure 4. Displacement of the point on the axis of the shock-tube at which the induced
field is zero. Points calculated from the solution correct to third order in R, are shown
by the symbol O. Points taken from the experimental curves are shown with the expected
range of error by the elongated crosses.
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The position at which the induced field is zero is moved progressively down-
stream as R,, increases. The determination of this point experimentally for each
series is not affected by systematic errors in the reading of the magnitude of in-
duced fields. This displacement was estimated from curves giving the best fit
to the experimental points. The results are compared in figure 4 with points
calculated for the solution correct to third order in R,,.

The author is greatly indebted to Dr J. A. Shercliff for many stimulating dis-
cussions during the course of the work and to Mrs P. Camm for her help in com-
puting results. The shock-tube project is supported by the United Kingdom
Atomic Energy Authority.

Appendix: Derivation of the magnetic field solution
Let of = =224, and /(q) be the Fourier transforms of &7, so that

) = f ° wewziz,

If we assume & and 0.7/0Z — 0 as |Z| — o0, and defer justification until later,

(12) becomes
{ 2 128 1

R "ROR TR
The appropriate solution for the field inside a tube is

- (qzw)} &= (22)

A = CL{(¢*+ )t B), (23)
where C is a constant. The transform of the boundary conditions (14) gives, at
R=1

’ _ 382
o = f e Ay e92d7 - Ay 0Z, as 6Z 0. (24)
1z

Using (24) in (23) to evaluate C, and inverting, we obtain

er? f L[(¢*+ )R] o—iaZ
AW8Z ~o L[(¢® +/\2)%]

The magnetic field on the axis of the tube is then given by

8B, B e—AZ J‘co (q2+/\2)%
AwdZ 2 | o L[+ 20}

The path of integration for (26) can be closed in the complex ¢-plane by a curve
where iq - 00 if Z > 0, or where i¢ - — 0 if Z < 0. The poles of the integrand
lie at ¢ = +14(A%+a2)} where a, is any of the roots of J,(a) = 0, except for & =0,
and Ji(«) is a Bessel function of the first kind and of the first order. The sum of
the residues at the poles in the appropriate half plane gives

dq. (25)

e 2 dg., (26)

6BZ"0 oz © ase—m“‘“f‘)“z\

= e .
4,07 s=1 (A2 + 1)} Jy(ar,)

(27)
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A similar series can be formed for the integral in (25), and it is found that the
original assumptions, .2/ and 0.2//0Z — 0 as |Z| - <o, are justified. The integral
of (26) is expanded as a power series in § 2. The series for the individual terms are
most easily obtained by expanding (27).
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